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Advanced composite materials are well known for their excellent mechanical properties. 

Tailoring these properties to achieve lightweight and efficient structures represents a real 

challenge for both researchers and industries. Indeed, for a composite structure made of 

unidirectional plies, tailoring results in a variable thickness distribution, thus, a variable 

distribution of plies number. In literature, the term “blending” is used to identify the 

manufacturing constraints to be applied when designing tailored composite plates [1]. Indeed, 

blending constraints are formulated to ensure that the stacking sequences of adjacent regions 

of the plate are consistent, e.g. paths of plies belonging to adjacent stacking sequences cannot 

cross each other (see Figure 1). 

In literature, two approaches have been typically used to formulate blending constraints. In 

the first one the laminate is modeled explicitly via its stacking sequence and manufacturing 

constraints are directly imposed to adjacent stacks [2]. The main drawback of this approach is 

that a huge number of design variables is generated unless major simplifications are 

introduced, i.e. limited number of ply orientations.  

The second approach is based on the formulation of blending constraints in lamination 

parameters (LPs) or polar parameters (PPs) space in the framework of multi-scale 

optimization strategies for composite structures [3]. Generally speaking, a multiscale 

optimization strategy is characterized by two-step: in the first step the macroscopic 

parameters (LPs or PPs) of the laminate are considered at design variables and the laminate is 

modelled as an equivalent homogeneous anisotropic plate. At this level the goal is to find the 

optimum value of the laminate mechanical parameters satisfying the requirements of the 

problem at hand by including suitable blending constraints. Conversely, during the second 

step the goal is the determination of at least one optimum stacking sequence that must satisfy 

the optimum value of the laminate mechanical parameters resulting from the first step.  

However, LPs show a main drawback: they do not have a simple and immediate physical 

meaning. Moreover, unlike PPs, LPs are not tensor invariants and cannot be properly 

exploited to impose fundamental requirements on the laminate elastic symmetries. In this 

work, the multiscale two-level optimization (MS2L) strategy [4] [5] has been enriched by 

considering the manufacturing constraints linked to the ply drop and add technique, i.e. the 

blending constraints to tailor the composite structure. The optimization problem as well as the 

laminate blending constraints are stated in the general theoretical framework of the polar 

formalism [6]. The main advantage in using PPS resides in the fact that the polar invariants 

have an immediate physical meaning which is linked to the different (elastic) symmetries of 

the stiffness tensors of the laminate. In particular, in this study blending constraints have been 
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integrated directly within the first-level problem (the structural optimization) in order to let 

formulate the second-level problem (the lay-up design) as an unconstrained minimization 

problem as all the requirements (geometrical, technological, mechanical, etc.) are satisfied 

since the first step of the MS2L strategy. 

In order to limit the computational effort, the polar formulation of blending constraints has 

been integrated within a gradient-based optimization algorithm. 

To assess the proposed optimization framework, a numerical test-case taken from the 

literature [7], addressing a composite structure of aeronautic interest, is considered. The 

proposed benchmark focuses on the least-weight design of a composite wing-box by 

considering requirements on the first buckling load, on the maximum strain and blending 

constraints as well. 

 

 
Figure 1 – Generic blending between adjacent regions. 
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